抛物线顶点坐标公式高中
抛物线的顶点坐标可以通过其标准方程来确定。对于二次函数的一般形式:
```y = ax^2 + bx + c (a ≠ 0)```
抛物线的顶点坐标公式是:
```(h, k) = (-b/2a, (4ac-b²)/4a)```
其中:
`h` 是抛物线顶点的 x 坐标。
`k` 是抛物线顶点的 y 坐标。
这个公式适用于所有形式的二次函数,无论开口方向如何。如果抛物线方程是顶点式:
```y = a(x-h)^2 + k (a ≠ 0, k 为常数)```
那么顶点坐标直接由 `h` 和 `k` 给出,即 (h, k)。
需要注意的是,这些公式适用于二次函数,即最高次项为 `x^2` 的函数。对于其他类型的函数,顶点坐标的确定方法会有所不同
其他小伙伴的相似问题:
抛物线顶点坐标公式适用于哪些函数?
初中抛物线顶点公式是什么?
抛物线顶点在x轴上的解析式?